Cargando…

Fast Whole-Genome Phylogeny of the COVID-19 Virus SARS-CoV-2 by Compression

We analyze the whole genome phylogeny and taxonomy of the SARS-CoV-2 virus using compression. This is a new fast alignment-free method called the “normalized compression distance” (NCD) method. It discovers all effective similarities based on Kolmogorov complexity. The latter being incomputable we a...

Descripción completa

Detalles Bibliográficos
Autores principales: Cilibrasi, Rudi L., Vitányi, Paul M.B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132223/
https://www.ncbi.nlm.nih.gov/pubmed/34013267
http://dx.doi.org/10.1101/2020.07.22.216242
Descripción
Sumario:We analyze the whole genome phylogeny and taxonomy of the SARS-CoV-2 virus using compression. This is a new fast alignment-free method called the “normalized compression distance” (NCD) method. It discovers all effective similarities based on Kolmogorov complexity. The latter being incomputable we approximate it by a good compressor such as the modern zpaq. The results comprise that the SARS-CoV-2 virus is closest to the RaTG13 virus and similar to two bat SARS-like coronaviruses bat-SL-CoVZXC21 and bat-SL-CoVZC4. The similarity is quantified and compared with the same quantified similarities among the mtDNA of certain species. We treat the question whether Pangolins are involved in the SARS-CoV-2 virus. The compression method is simpler and possibly faster than any other whole genome method, which makes it the ideal tool to explore phylogeny.