Cargando…

EpiCovDA: a mechanistic COVID-19 forecasting model with data assimilation

We introduce a minimalist outbreak forecasting model that combines data-driven parameter estimation with variational data assimilation. By focusing on the fundamental components of nonlinear disease transmission and representing data in a domain where model stochasticity simplifies into a process wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Biegel, Hannah R., Lega, Joceline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cornell University 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132228/
https://www.ncbi.nlm.nih.gov/pubmed/34012991
Descripción
Sumario:We introduce a minimalist outbreak forecasting model that combines data-driven parameter estimation with variational data assimilation. By focusing on the fundamental components of nonlinear disease transmission and representing data in a domain where model stochasticity simplifies into a process with independent increments, we design an approach that only requires four core parameters to be estimated. We illustrate this novel methodology on COVID-19 forecasts. Results include case count and deaths predictions for the US and all of its 50 states, the District of Columbia, and Puerto Rico. The method is computationally efficient and is not disease- or location-specific. It may therefore be applied to other outbreaks or other countries, provided case counts and/or deaths data are available.