Cargando…
EpiCovDA: a mechanistic COVID-19 forecasting model with data assimilation
We introduce a minimalist outbreak forecasting model that combines data-driven parameter estimation with variational data assimilation. By focusing on the fundamental components of nonlinear disease transmission and representing data in a domain where model stochasticity simplifies into a process wi...
Autores principales: | Biegel, Hannah R., Lega, Joceline |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132228/ https://www.ncbi.nlm.nih.gov/pubmed/34012991 |
Ejemplares similares
-
Data-driven outbreak forecasting with a simple nonlinear growth model
por: Lega, Joceline, et al.
Publicado: (2016) -
Bayesian sequential data assimilation for COVID-19 forecasting
por: Daza-Torres, Maria L., et al.
Publicado: (2022) -
Probabilistic forecasting and Bayesian data assimilation
por: Reich, Sebastian, et al.
Publicado: (2015) -
Forecast error correction using dynamic data assimilation
por: Lakshmivarahan, Sivaramakrishnan, et al.
Publicado: (2016) -
An ensemble data assimilation modeling system for operational outdoor microalgae growth forecasting
por: Yan, Hongxiang, et al.
Publicado: (2022)