Cargando…
A Joint Fairness Model with Applications to Risk Predictions for Under-represented Populations
In data collection for predictive modeling, under-representation of certain groups, based on gender, race/ethnicity, or age, may yield less-accurate predictions for these groups. Recently, this issue of fairness in predictions has attracted significant attention, as data-driven models are increasing...
Autores principales: | Do, Hyungrok, Nandi, Shinjini, Putzel, Preston, Smyth, Padhraic, Zhong, Judy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132236/ https://www.ncbi.nlm.nih.gov/pubmed/34012993 |
Ejemplares similares
-
Machine Learning of Discriminative Gate Locations for Clinical Diagnosis
por: Ji, Disi, et al.
Publicado: (2019) -
Homœopathy Fairly Represented
por: Henderson, Wm.
Publicado: (1855) -
Homœopathy Fairly Represented: A Reply to Prof. Pimpson’s “Homœopathy” Misrepresented
Publicado: (1854) -
Dementia clinical trials over the past decade: are women fairly represented?
por: Pinho-Gomes, Ana-Catarina, et al.
Publicado: (2022) -
Quantifying representativeness in randomized clinical trials using machine learning fairness metrics
por: Qi, Miao, et al.
Publicado: (2021)