Cargando…
Forecasting COVID-19 cases: A comparative analysis between Recurrent and Convolutional Neural Networks
When the entire world is waiting restlessly for a safe and effective COVID-19 vaccine that could soon become a reality, numerous countries around the globe are grappling with unprecedented surges of new COVID-19 cases. As the number of new cases is skyrocketing, pandemic fatigue and public apathy to...
Autores principales: | Nabi, Khondoker Nazmoon, Tahmid, Md Toki, Rafi, Abdur, Kader, Muhammad Ehsanul, Haider, Md. Asif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132256/ https://www.ncbi.nlm.nih.gov/pubmed/34013282 http://dx.doi.org/10.1101/2020.11.28.20240259 |
Ejemplares similares
-
Forecasting COVID-19 cases: A comparative analysis between recurrent and convolutional neural networks
por: Nabi, Khondoker Nazmoon, et al.
Publicado: (2021) -
Forecasting COVID-19 pandemic: A data-driven analysis
por: Nabi, Khondoker Nazmoon
Publicado: (2020) -
Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives
por: Nabi, Khondoker Nazmoon, et al.
Publicado: (2020) -
Projections and fractional dynamics of COVID-19 with optimal control strategies
por: Nabi, Khondoker Nazmoon, et al.
Publicado: (2021) -
Social distancing as a public-good dilemma for socio-economic cost: An evolutionary game approach
por: Ovi, Murshed Ahmed, et al.
Publicado: (2022)