Cargando…
Quantifying superspreading for COVID-19 using Poisson mixture distributions
The number of secondary cases is an important parameter for the control of infectious diseases. When individual variation in disease transmission is present, like for COVID-19, the number of secondary cases is often modelled using a negative binomial distribution. However, this may not be the best d...
Autores principales: | Kremer, Cécile, Torneri, Andrea, Boesmans, Sien, Meuwissen, Hanne, Verdonschot, Selina, Driessche, Koen Vanden, Althaus, Christian L., Faes, Christel, Hens, Niel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132264/ https://www.ncbi.nlm.nih.gov/pubmed/34013290 http://dx.doi.org/10.1101/2020.11.27.20239657 |
Ejemplares similares
-
Quantifying superspreading for COVID-19 using Poisson mixture distributions
por: Kremer, Cécile, et al.
Publicado: (2021) -
Authors’ response: Estimating the generation interval for COVID-19 based on symptom onset data
por: Kremer, Cécile, et al.
Publicado: (2020) -
Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020
por: Ganyani, Tapiwa, et al.
Publicado: (2020) -
Laplacian‐P‐splines for Bayesian inference in the mixture cure model
por: Gressani, Oswaldo, et al.
Publicado: (2022) -
Ebola superspreading
por: Althaus, Christian L
Publicado: (2015)