Cargando…
A deep learning approach for dental implant planning in cone-beam computed tomography images
BACKGROUND: The aim of this study was to evaluate the success of the artificial intelligence (AI) system in implant planning using three-dimensional cone-beam computed tomography (CBCT) images. METHODS: Seventy-five CBCT images were included in this study. In these images, bone height and thickness...
Autores principales: | Bayrakdar, Sevda Kurt, Orhan, Kaan, Bayrakdar, Ibrahim Sevki, Bilgir, Elif, Ezhov, Matvey, Gusarev, Maxim, Shumilov, Eugene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132372/ https://www.ncbi.nlm.nih.gov/pubmed/34011314 http://dx.doi.org/10.1186/s12880-021-00618-z |
Ejemplares similares
-
Assessing the Effectiveness of Artificial Intelligence Models for Detecting Alveolar Bone Loss in Periodontal Disease: A Panoramic Radiograph Study
por: Uzun Saylan, Bilge Cansu, et al.
Publicado: (2023) -
Cone beam computed tomography evaluation of sphenoid sinus in different sagittal skeletal pattern
por: Yesiltepe, Selin, et al.
Publicado: (2022) -
Evaluation of the snowing-like ultrasonographic features of intraosseous jaw pathologies
por: Bayrakdar, Ibrahim Sevki, et al.
Publicado: (2020) -
Dental radiographic procedures during COVID-19 outbreak and normalization period: recommendations on infection control
por: Ilhan, Betul, et al.
Publicado: (2020) -
An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population
por: Bağ, İrem, et al.
Publicado: (2023)