Cargando…
Identifying cell types from single-cell data based on similarities and dissimilarities between cells
BACKGROUND: With the development of the technology of single-cell sequence, revealing homogeneity and heterogeneity between cells has become a new area of computational systems biology research. However, the clustering of cell types becomes more complex with the mutual penetration between different...
Autores principales: | Li, Yuanyuan, Luo, Ping, Lu, Yi, Wu, Fang-Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132444/ https://www.ncbi.nlm.nih.gov/pubmed/34006217 http://dx.doi.org/10.1186/s12859-020-03873-z |
Ejemplares similares
-
Similarities and dissimilarities between psychiatric cluster disorders
por: Smail, Marissa A., et al.
Publicado: (2021) -
Improving contig binning of metagenomic data using [Formula: see text] oligonucleotide frequency dissimilarity
por: Wang, Ying, et al.
Publicado: (2017) -
Hill-based dissimilarity indices and null models for analysis of microbial community assembly
por: Modin, Oskar, et al.
Publicado: (2020) -
GO-based Functional Dissimilarity of Gene Sets
por: Díaz-Díaz, Norberto, et al.
Publicado: (2011) -
Impact of data preprocessing on cell-type clustering based on single-cell RNA-seq data
por: Wang, Chunxiang, et al.
Publicado: (2020)