Cargando…
Fusing Ambient and Mobile Sensor Features Into a Behaviorome for Predicting Clinical Health Scores
Advances in machine learning and low-cost, ubiquitous sensors offer a practical method for understanding the predictive relationship between behavior and health. In this study, we analyze this relationship by building a behaviorome, or set of digital behavior markers, from a fusion of data collected...
Autores principales: | COOK, DIANE J., SCHMITTER-EDGECOMBE, MAUREEN |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132971/ https://www.ncbi.nlm.nih.gov/pubmed/34017671 http://dx.doi.org/10.1109/access.2021.3076362 |
Ejemplares similares
-
Using Actigraphy to Predict the Ecological Momentary Assessment of Mood, Fatigue, and Cognition in Older Adulthood: Mixed-Methods Study
por: Parsey, Carolyn M, et al.
Publicado: (2019) -
Automated Smart Home Assessment to Support Pain Management: Multiple Methods Analysis
por: Fritz, Roschelle L, et al.
Publicado: (2020) -
Mobility and Upright Posture Are Associated with Different Aspects of Cognition in Older Adults
por: Cohen, Rajal G., et al.
Publicado: (2016) -
Improving prediction of COVID-19 evolution by fusing epidemiological and mobility data
por: García-Cremades, Santi, et al.
Publicado: (2021) -
Prediction of phosphothreonine sites in human proteins by fusing different features
por: Zhao, Ya-Wei, et al.
Publicado: (2016)