Cargando…
Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree
Sepsis is a leading cause of mortality in the intensive care unit. Early prediction of sepsis can reduce the overall mortality rate and cost of sepsis treatment. Some studies have predicted mortality and development of sepsis using machine learning models. However, there is a gap between the creatio...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133100/ https://www.ncbi.nlm.nih.gov/pubmed/34106618 http://dx.doi.org/10.1097/MD.0000000000025813 |
Sumario: | Sepsis is a leading cause of mortality in the intensive care unit. Early prediction of sepsis can reduce the overall mortality rate and cost of sepsis treatment. Some studies have predicted mortality and development of sepsis using machine learning models. However, there is a gap between the creation of different machine learning algorithms and their implementation in clinical practice. This study utilized data from the Medical Information Mart for Intensive Care III. We established and compared the gradient boosting decision tree (GBDT), logistic regression (LR), k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). A total of 3937 sepsis patients were included, with 34.3% mortality in the Medical Information Mart for Intensive Care III group. In our comparison of 5 machine learning models (GBDT, LR, KNN, RF, and SVM), the GBDT model showed the best performance with the highest area under the receiver operating characteristic curve (0.992), recall (94.8%), accuracy (95.4%), and F1 score (0.933). The RF, SVM, and KNN models showed better performance (area under the receiver operating characteristic curve: 0.980, 0.898, and 0.877, respectively) than the LR (0.876). The GBDT model showed better performance than other machine learning models (LR, KNN, RF, and SVM) in predicting the mortality of patients with sepsis in the intensive care unit. This could be used to develop a clinical decision support system in the future. |
---|