Cargando…
A morphology-based radiological image segmentation approach for efficient screening of COVID-19
Computer-aided radiological image interpretation systems can be helpful to reshape the overall workflow of the COVID-19 diagnosis process. This article describes an unsupervised CT scan image segmentation approach. This approach begins by performing a morphological reconstruction operation that is u...
Autores principales: | Chakraborty, Shouvik, Mali, Kalyani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133384/ https://www.ncbi.nlm.nih.gov/pubmed/34031636 http://dx.doi.org/10.1016/j.bspc.2021.102800 |
Ejemplares similares
-
SuFMoFPA: A superpixel and meta-heuristic based fuzzy image segmentation approach to explicate COVID-19 radiological images
por: Chakraborty, Shouvik, et al.
Publicado: (2021) -
SUFEMO: A superpixel based fuzzy image segmentation method for COVID-19 radiological image elucidation
por: Chakraborty, Shouvik, et al.
Publicado: (2022) -
SUFMACS: A machine learning-based robust image segmentation framework for COVID-19 radiological image interpretation
por: Chakraborty, Shouvik, et al.
Publicado: (2021) -
A radiological image analysis framework for early screening of the COVID-19 infection: A computer vision-based approach
por: Chakraborty, Shouvik, et al.
Publicado: (2022) -
Fuzzy Electromagnetism Optimization (FEMO) and its application in biomedical image segmentation
por: Chakraborty, Shouvik, et al.
Publicado: (2020)