Cargando…
Multitask learning and nonlinear optimal control of the COVID-19 outbreak: A geometric programming approach()
We propose a multitask learning approach to learn the parameters of a compartmental discrete-time epidemic model from various data sources and use it to design optimal control strategies of human-mobility restrictions that both curb the epidemic and minimize the economic costs associated with implem...
Autores principales: | Hayhoe, Mikhail, Barreras, Francisco, Preciado, Victor M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133409/ https://www.ncbi.nlm.nih.gov/pubmed/34040494 http://dx.doi.org/10.1016/j.arcontrol.2021.04.014 |
Ejemplares similares
-
Robust and optimal predictive control of the COVID-19 outbreak()
por: Köhler, Johannes, et al.
Publicado: (2021) -
Getting stuck with pornography? Overuse or neglect of cybersex cues
in a multitasking situation is related to symptoms of cybersex
addiction
por: SCHIEBENER, JOHANNES, et al.
Publicado: (2015) -
Preparation, Optimization, and Investigation of Naringenin-Loaded Microemulsion for Topical Application
por: Salimi, Anayatollah, et al.
Publicado: (2022) -
Nonlinear nexus between cryptocurrency returns and COVID-19 news sentiment
por: Banerjee, Ameet Kumar, et al.
Publicado: (2022) -
Quality Control of Widely Used Therapeutic Recombinant Proteins by a Novel Real-Time PCR Approach
por: Mamnoon, Babak, et al.
Publicado: (2016)