Cargando…
Quantitative analysis of piano performance proficiency focusing on difference between hands
Quantitative evaluation of piano performance is of interests in many fields, including music education and computational performance rendering. Previous studies utilized features extracted from audio or musical instrument digital interface (MIDI) files but did not address the difference between hand...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8133499/ https://www.ncbi.nlm.nih.gov/pubmed/34010289 http://dx.doi.org/10.1371/journal.pone.0250299 |
Sumario: | Quantitative evaluation of piano performance is of interests in many fields, including music education and computational performance rendering. Previous studies utilized features extracted from audio or musical instrument digital interface (MIDI) files but did not address the difference between hands (DBH), which might be an important aspect of high-quality performance. Therefore, we investigated DBH as an important factor determining performance proficiency. To this end, 34 experts and 34 amateurs were recruited to play two excerpts on a Yamaha Disklavier. Each performance was recorded in MIDI, and handcrafted features were extracted separately for the right hand (RH) and left hand (LH). These were conventional MIDI features representing temporal and dynamic attributes of each note and computed as absolute values (e. g., MIDI velocity) or ratios between performance and corresponding scores (e. g., ratio of duration or inter-onset interval (IOI)). These note-based features were rearranged into additional features representing DBH by simple subtraction between features of both hands. Statistical analyses showed that DBH was more significant in experts than in amateurs across features. Regarding temporal features, experts pressed keys longer and faster with the RH than did amateurs. Regarding dynamic features, RH exhibited both greater values and a smoother change along melodic intonations in experts that in amateurs. Further experiments using principal component analysis (PCA) and support vector machine (SVM) verified that hand-difference features can successfully differentiate experts from amateurs according to performance proficiency. Moreover, existing note-based raw feature values (Basic features) and DBH features were tested repeatedly via 10-fold cross-validation, suggesting that adding DBH features to Basic features improved F1 scores to 93.6% (by 3.5%) over Basic features. Our results suggest that differently controlling both hands simultaneously is an important skill for pianists; therefore, DBH features should be considered in the quantitative evaluation of piano performance. |
---|