Cargando…

Turnover and activity-dependent transcriptional control of NompC in the Drosophila ear

Across their lives, biological sensors maintain near-constant functional outputs despite countless exogenous and endogenous perturbations. This sensory homeostasis is the product of multiple dynamic equilibria, the breakdown of which contributes to age-related decline. The mechanisms of homeostatic...

Descripción completa

Detalles Bibliográficos
Autores principales: Boyd-Gibbins, Nicholas, Tardieu, Camille H., Blunskyte, Modesta, Kirkwood, Nerissa, Somers, Jason, Albert, Joerg T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134069/
https://www.ncbi.nlm.nih.gov/pubmed/34027326
http://dx.doi.org/10.1016/j.isci.2021.102486
Descripción
Sumario:Across their lives, biological sensors maintain near-constant functional outputs despite countless exogenous and endogenous perturbations. This sensory homeostasis is the product of multiple dynamic equilibria, the breakdown of which contributes to age-related decline. The mechanisms of homeostatic maintenance, however, are still poorly understood. The ears of vertebrates and insects are characterized by exquisite sensitivities but also by marked functional vulnerabilities. Being under the permanent load of thermal and acoustic noise, auditory transducer channels exemplify the homeostatic challenge. We show that (1) NompC-dependent mechanotransducers in the ear of the fruit fly Drosophila melanogaster undergo continual replacement with estimated turnover times of 9.1 hr; (2) a de novo synthesis of NompC can restore transducer function in the adult ears of congenitally hearing-impaired flies; (3) key components of the auditory transduction chain, including NompC, are under activity-dependent transcriptional control, likely forming a transducer-operated mechanosensory gain control system that extends beyond hearing organs.