Cargando…

CycleGAN for interpretable online EMT compensation

PURPOSE: Electromagnetic tracking (EMT) can partially replace X-ray guidance in minimally invasive procedures, reducing radiation in the OR. However, in this hybrid setting, EMT is disturbed by metallic distortion caused by the X-ray device. We plan to make hybrid navigation clinical reality to redu...

Descripción completa

Detalles Bibliográficos
Autores principales: Krumb, Henry, Das, Dhritimaan, Chadda, Romol, Mukhopadhyay, Anirban
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134291/
https://www.ncbi.nlm.nih.gov/pubmed/33719026
http://dx.doi.org/10.1007/s11548-021-02324-1
Descripción
Sumario:PURPOSE: Electromagnetic tracking (EMT) can partially replace X-ray guidance in minimally invasive procedures, reducing radiation in the OR. However, in this hybrid setting, EMT is disturbed by metallic distortion caused by the X-ray device. We plan to make hybrid navigation clinical reality to reduce radiation exposure for patients and surgeons, by compensating EMT error. METHODS: Our online compensation strategy exploits cycle-consistent generative adversarial neural networks (CycleGAN). Positions are translated from various bedside environments to their bench equivalents, by adjusting their z-component. Domain-translated points are fine-tuned on the x–y plane to reduce error in the bench domain. We evaluate our compensation approach in a phantom experiment. RESULTS: Since the domain-translation approach maps distorted points to their laboratory equivalents, predictions are consistent among different C-arm environments. Error is successfully reduced in all evaluation environments. Our qualitative phantom experiment demonstrates that our approach generalizes well to an unseen C-arm environment. CONCLUSION: Adversarial, cycle-consistent training is an explicable, consistent and thus interpretable approach for online error compensation. Qualitative assessment of EMT error compensation gives a glimpse to the potential of our method for rotational error compensation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11548-021-02324-1.