Cargando…
Simulation-to-real domain adaptation with teacher–student learning for endoscopic instrument segmentation
PURPOSE: Segmentation of surgical instruments in endoscopic video streams is essential for automated surgical scene understanding and process modeling. However, relying on fully supervised deep learning for this task is challenging because manual annotation occupies valuable time of the clinical exp...
Autores principales: | Sahu, Manish, Mukhopadhyay, Anirban, Zachow, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134307/ https://www.ncbi.nlm.nih.gov/pubmed/33982232 http://dx.doi.org/10.1007/s11548-021-02383-4 |
Ejemplares similares
-
The perceived affordances of simulation-based learning: online student teachers’ perspectives
por: Dittrich, Lynn, et al.
Publicado: (2022) -
Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative
por: Tack, Alexander, et al.
Publicado: (2021) -
Teachers’ professional identity: validation of an assessment instrument for preservice teachers
por: Gracia, Elisa Pérez, et al.
Publicado: (2021) -
Real-Time Cerebral Vessel Segmentation in Laser Speckle Contrast Image Based on Unsupervised Domain Adaptation
por: Chen, Heping, et al.
Publicado: (2021) -
Domain Adaptation for Medical Image Segmentation: A Meta-Learning Method
por: Zhang, Penghao, et al.
Publicado: (2021)