Cargando…
Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database
In predictive microbiology, statistical models are employed to predict bacterial population behavior in food using environmental factors such as temperature, pH, and water activity. As the amount and complexity of data increase, handling all data with high-dimensional variables becomes a difficult t...
Autores principales: | Hiura, Satoko, Koseki, Shige, Koyama, Kento |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134468/ https://www.ncbi.nlm.nih.gov/pubmed/34012066 http://dx.doi.org/10.1038/s41598-021-90164-z |
Ejemplares similares
-
Bayesian Generalized Linear Model for Simulating Bacterial Inactivation/Growth Considering Variability and Uncertainty
por: Hiura, Satoko, et al.
Publicado: (2021) -
Competitive growth kinetics of Campylobacter jejuni, Escherichia coli O157:H7 and Listeria monocytogenes with enteric microflora in a small‐intestine model
por: Fuchisawa, Yuto, et al.
Publicado: (2021) -
Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment
por: Koyama, Kento, et al.
Publicado: (2017) -
Predicting sensory evaluation of spinach freshness using machine learning model and digital images
por: Koyama, Kento, et al.
Publicado: (2021) -
A Machine Learning Model for Food Source Attribution of Listeria monocytogenes
por: Tanui, Collins K., et al.
Publicado: (2022)