Cargando…
A Novel Smart Motor Imagery Intention Human-Computer Interaction Model Using Extreme Learning Machine and EEG Signals
The brain is the central nervous system that governs human activities. However, in modern society, more and more diseases threaten the health of the brain and nerves and spinal cord, making the human brain unable to conduct normal information interaction with the outside world. The rehabilitation tr...
Autores principales: | Gu, Yi, Hua, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134549/ https://www.ncbi.nlm.nih.gov/pubmed/34025347 http://dx.doi.org/10.3389/fnins.2021.685119 |
Ejemplares similares
-
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
Recognition of EEG Signal Motor Imagery Intention Based on Deep Multi-View Feature Learning
por: Xu, Jiacan, et al.
Publicado: (2020) -
A Generalizable and Discriminative Learning Method for Deep EEG-Based Motor Imagery Classification
por: Huang, Xiuyu, et al.
Publicado: (2021)