Cargando…

An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities

Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Sullivan, Denise M., Doyle, Ronan M., Temisak, Sasithon, Redshaw, Nicholas, Whale, Alexandra S., Logan, Grace, Huang, Jiabin, Fischer, Nicole, Amos, Gregory C. A., Preston, Mark D., Marchesi, Julian R., Wagner, Josef, Parkhill, Julian, Motro, Yair, Denise, Hubert, Finn, Robert D., Harris, Kathryn A., Kay, Gemma L., O’Grady, Justin, Ransom-Jones, Emma, Wu, Huihai, Laing, Emma, Studholme, David J., Benavente, Ernest Diez, Phelan, Jody, Clark, Taane G., Moran-Gilad, Jacob, Huggett, Jim F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134577/
https://www.ncbi.nlm.nih.gov/pubmed/34012005
http://dx.doi.org/10.1038/s41598-021-89881-2
_version_ 1783695203957211136
author O’Sullivan, Denise M.
Doyle, Ronan M.
Temisak, Sasithon
Redshaw, Nicholas
Whale, Alexandra S.
Logan, Grace
Huang, Jiabin
Fischer, Nicole
Amos, Gregory C. A.
Preston, Mark D.
Marchesi, Julian R.
Wagner, Josef
Parkhill, Julian
Motro, Yair
Denise, Hubert
Finn, Robert D.
Harris, Kathryn A.
Kay, Gemma L.
O’Grady, Justin
Ransom-Jones, Emma
Wu, Huihai
Laing, Emma
Studholme, David J.
Benavente, Ernest Diez
Phelan, Jody
Clark, Taane G.
Moran-Gilad, Jacob
Huggett, Jim F.
author_facet O’Sullivan, Denise M.
Doyle, Ronan M.
Temisak, Sasithon
Redshaw, Nicholas
Whale, Alexandra S.
Logan, Grace
Huang, Jiabin
Fischer, Nicole
Amos, Gregory C. A.
Preston, Mark D.
Marchesi, Julian R.
Wagner, Josef
Parkhill, Julian
Motro, Yair
Denise, Hubert
Finn, Robert D.
Harris, Kathryn A.
Kay, Gemma L.
O’Grady, Justin
Ransom-Jones, Emma
Wu, Huihai
Laing, Emma
Studholme, David J.
Benavente, Ernest Diez
Phelan, Jody
Clark, Taane G.
Moran-Gilad, Jacob
Huggett, Jim F.
author_sort O’Sullivan, Denise M.
collection PubMed
description Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the composition of the microbiome when using 16S rRNA gene amplicon sequencing data. The study observed differences in terms of both presence and abundance of organisms and provides a resource for ensuring reproducible pipeline development and application. The observed differences were especially prevalent when using custom databases and applying high stringency operational taxonomic unit (OTU) cut-off limits. In order to apply sequencing approaches with greater accuracy, the impact of different analytical steps needs to be clearly delineated and solutions devised to harmonise microbiome analysis results.
format Online
Article
Text
id pubmed-8134577
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-81345772021-05-25 An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities O’Sullivan, Denise M. Doyle, Ronan M. Temisak, Sasithon Redshaw, Nicholas Whale, Alexandra S. Logan, Grace Huang, Jiabin Fischer, Nicole Amos, Gregory C. A. Preston, Mark D. Marchesi, Julian R. Wagner, Josef Parkhill, Julian Motro, Yair Denise, Hubert Finn, Robert D. Harris, Kathryn A. Kay, Gemma L. O’Grady, Justin Ransom-Jones, Emma Wu, Huihai Laing, Emma Studholme, David J. Benavente, Ernest Diez Phelan, Jody Clark, Taane G. Moran-Gilad, Jacob Huggett, Jim F. Sci Rep Article Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the composition of the microbiome when using 16S rRNA gene amplicon sequencing data. The study observed differences in terms of both presence and abundance of organisms and provides a resource for ensuring reproducible pipeline development and application. The observed differences were especially prevalent when using custom databases and applying high stringency operational taxonomic unit (OTU) cut-off limits. In order to apply sequencing approaches with greater accuracy, the impact of different analytical steps needs to be clearly delineated and solutions devised to harmonise microbiome analysis results. Nature Publishing Group UK 2021-05-19 /pmc/articles/PMC8134577/ /pubmed/34012005 http://dx.doi.org/10.1038/s41598-021-89881-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
O’Sullivan, Denise M.
Doyle, Ronan M.
Temisak, Sasithon
Redshaw, Nicholas
Whale, Alexandra S.
Logan, Grace
Huang, Jiabin
Fischer, Nicole
Amos, Gregory C. A.
Preston, Mark D.
Marchesi, Julian R.
Wagner, Josef
Parkhill, Julian
Motro, Yair
Denise, Hubert
Finn, Robert D.
Harris, Kathryn A.
Kay, Gemma L.
O’Grady, Justin
Ransom-Jones, Emma
Wu, Huihai
Laing, Emma
Studholme, David J.
Benavente, Ernest Diez
Phelan, Jody
Clark, Taane G.
Moran-Gilad, Jacob
Huggett, Jim F.
An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities
title An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities
title_full An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities
title_fullStr An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities
title_full_unstemmed An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities
title_short An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities
title_sort inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134577/
https://www.ncbi.nlm.nih.gov/pubmed/34012005
http://dx.doi.org/10.1038/s41598-021-89881-2
work_keys_str_mv AT osullivandenisem aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT doyleronanm aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT temisaksasithon aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT redshawnicholas aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT whalealexandras aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT logangrace aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT huangjiabin aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT fischernicole aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT amosgregoryca aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT prestonmarkd aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT marchesijulianr aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT wagnerjosef aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT parkhilljulian aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT motroyair aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT denisehubert aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT finnrobertd aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT harriskathryna aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT kaygemmal aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT ogradyjustin aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT ransomjonesemma aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT wuhuihai aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT laingemma aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT studholmedavidj aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT benaventeernestdiez aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT phelanjody aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT clarktaaneg aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT morangiladjacob aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT huggettjimf aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT osullivandenisem interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT doyleronanm interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT temisaksasithon interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT redshawnicholas interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT whalealexandras interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT logangrace interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT huangjiabin interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT fischernicole interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT amosgregoryca interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT prestonmarkd interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT marchesijulianr interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT wagnerjosef interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT parkhilljulian interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT motroyair interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT denisehubert interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT finnrobertd interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT harriskathryna interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT kaygemmal interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT ogradyjustin interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT ransomjonesemma interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT wuhuihai interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT laingemma interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT studholmedavidj interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT benaventeernestdiez interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT phelanjody interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT clarktaaneg interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT morangiladjacob interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities
AT huggettjimf interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities