Cargando…
An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities
Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134577/ https://www.ncbi.nlm.nih.gov/pubmed/34012005 http://dx.doi.org/10.1038/s41598-021-89881-2 |
_version_ | 1783695203957211136 |
---|---|
author | O’Sullivan, Denise M. Doyle, Ronan M. Temisak, Sasithon Redshaw, Nicholas Whale, Alexandra S. Logan, Grace Huang, Jiabin Fischer, Nicole Amos, Gregory C. A. Preston, Mark D. Marchesi, Julian R. Wagner, Josef Parkhill, Julian Motro, Yair Denise, Hubert Finn, Robert D. Harris, Kathryn A. Kay, Gemma L. O’Grady, Justin Ransom-Jones, Emma Wu, Huihai Laing, Emma Studholme, David J. Benavente, Ernest Diez Phelan, Jody Clark, Taane G. Moran-Gilad, Jacob Huggett, Jim F. |
author_facet | O’Sullivan, Denise M. Doyle, Ronan M. Temisak, Sasithon Redshaw, Nicholas Whale, Alexandra S. Logan, Grace Huang, Jiabin Fischer, Nicole Amos, Gregory C. A. Preston, Mark D. Marchesi, Julian R. Wagner, Josef Parkhill, Julian Motro, Yair Denise, Hubert Finn, Robert D. Harris, Kathryn A. Kay, Gemma L. O’Grady, Justin Ransom-Jones, Emma Wu, Huihai Laing, Emma Studholme, David J. Benavente, Ernest Diez Phelan, Jody Clark, Taane G. Moran-Gilad, Jacob Huggett, Jim F. |
author_sort | O’Sullivan, Denise M. |
collection | PubMed |
description | Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the composition of the microbiome when using 16S rRNA gene amplicon sequencing data. The study observed differences in terms of both presence and abundance of organisms and provides a resource for ensuring reproducible pipeline development and application. The observed differences were especially prevalent when using custom databases and applying high stringency operational taxonomic unit (OTU) cut-off limits. In order to apply sequencing approaches with greater accuracy, the impact of different analytical steps needs to be clearly delineated and solutions devised to harmonise microbiome analysis results. |
format | Online Article Text |
id | pubmed-8134577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-81345772021-05-25 An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities O’Sullivan, Denise M. Doyle, Ronan M. Temisak, Sasithon Redshaw, Nicholas Whale, Alexandra S. Logan, Grace Huang, Jiabin Fischer, Nicole Amos, Gregory C. A. Preston, Mark D. Marchesi, Julian R. Wagner, Josef Parkhill, Julian Motro, Yair Denise, Hubert Finn, Robert D. Harris, Kathryn A. Kay, Gemma L. O’Grady, Justin Ransom-Jones, Emma Wu, Huihai Laing, Emma Studholme, David J. Benavente, Ernest Diez Phelan, Jody Clark, Taane G. Moran-Gilad, Jacob Huggett, Jim F. Sci Rep Article Despite the advent of whole genome metagenomics, targeted approaches (such as 16S rRNA gene amplicon sequencing) continue to be valuable for determining the microbial composition of samples. Amplicon microbiome sequencing can be performed on clinical samples from a normally sterile site to determine the aetiology of an infection (usually single pathogen identification) or samples from more complex niches such as human mucosa or environmental samples where multiple microorganisms need to be identified. The methodologies are frequently applied to determine both presence of micro-organisms and their quantity or relative abundance. There are a number of technical steps required to perform microbial community profiling, many of which may have appreciable precision and bias that impacts final results. In order for these methods to be applied with the greatest accuracy, comparative studies across different laboratories are warranted. In this study we explored the impact of the bioinformatic approaches taken in different laboratories on microbiome assessment using 16S rRNA gene amplicon sequencing results. Data were generated from two mock microbial community samples which were amplified using primer sets spanning five different variable regions of 16S rRNA genes. The PCR-sequencing analysis included three technical repeats of the process to determine the repeatability of their methods. Thirteen laboratories participated in the study, and each analysed the same FASTQ files using their choice of pipeline. This study captured the methods used and the resulting sequence annotation and relative abundance output from bioinformatic analyses. Results were compared to digital PCR assessment of the absolute abundance of each target representing each organism in the mock microbial community samples and also to analyses of shotgun metagenome sequence data. This ring trial demonstrates that the choice of bioinformatic analysis pipeline alone can result in different estimations of the composition of the microbiome when using 16S rRNA gene amplicon sequencing data. The study observed differences in terms of both presence and abundance of organisms and provides a resource for ensuring reproducible pipeline development and application. The observed differences were especially prevalent when using custom databases and applying high stringency operational taxonomic unit (OTU) cut-off limits. In order to apply sequencing approaches with greater accuracy, the impact of different analytical steps needs to be clearly delineated and solutions devised to harmonise microbiome analysis results. Nature Publishing Group UK 2021-05-19 /pmc/articles/PMC8134577/ /pubmed/34012005 http://dx.doi.org/10.1038/s41598-021-89881-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article O’Sullivan, Denise M. Doyle, Ronan M. Temisak, Sasithon Redshaw, Nicholas Whale, Alexandra S. Logan, Grace Huang, Jiabin Fischer, Nicole Amos, Gregory C. A. Preston, Mark D. Marchesi, Julian R. Wagner, Josef Parkhill, Julian Motro, Yair Denise, Hubert Finn, Robert D. Harris, Kathryn A. Kay, Gemma L. O’Grady, Justin Ransom-Jones, Emma Wu, Huihai Laing, Emma Studholme, David J. Benavente, Ernest Diez Phelan, Jody Clark, Taane G. Moran-Gilad, Jacob Huggett, Jim F. An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title | An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_full | An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_fullStr | An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_full_unstemmed | An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_short | An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
title_sort | inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134577/ https://www.ncbi.nlm.nih.gov/pubmed/34012005 http://dx.doi.org/10.1038/s41598-021-89881-2 |
work_keys_str_mv | AT osullivandenisem aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT doyleronanm aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT temisaksasithon aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT redshawnicholas aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT whalealexandras aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT logangrace aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT huangjiabin aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT fischernicole aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT amosgregoryca aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT prestonmarkd aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT marchesijulianr aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT wagnerjosef aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT parkhilljulian aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT motroyair aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT denisehubert aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT finnrobertd aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT harriskathryna aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT kaygemmal aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT ogradyjustin aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT ransomjonesemma aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT wuhuihai aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT laingemma aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT studholmedavidj aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT benaventeernestdiez aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT phelanjody aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT clarktaaneg aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT morangiladjacob aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT huggettjimf aninterlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT osullivandenisem interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT doyleronanm interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT temisaksasithon interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT redshawnicholas interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT whalealexandras interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT logangrace interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT huangjiabin interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT fischernicole interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT amosgregoryca interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT prestonmarkd interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT marchesijulianr interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT wagnerjosef interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT parkhilljulian interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT motroyair interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT denisehubert interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT finnrobertd interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT harriskathryna interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT kaygemmal interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT ogradyjustin interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT ransomjonesemma interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT wuhuihai interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT laingemma interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT studholmedavidj interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT benaventeernestdiez interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT phelanjody interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT clarktaaneg interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT morangiladjacob interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities AT huggettjimf interlaboratorystudytoinvestigatetheimpactofthebioinformaticscomponentonmicrobiomeanalysisusingmockcommunities |