Cargando…
Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs
We aimed to develop a deep learning algorithm detecting 10 common abnormalities (DLAD-10) on chest radiographs, and to evaluate its impact in diagnostic accuracy, timeliness of reporting and workflow efficacy. DLAD-10 was trained with 146 717 radiographs from 108 053 patients using a ResNet34-based...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
European Respiratory Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134811/ https://www.ncbi.nlm.nih.gov/pubmed/33243843 http://dx.doi.org/10.1183/13993003.03061-2020 |