Cargando…
Socioeconomic inequalities in lifestyle risk factors across low- and middle-income countries
BACKGROUND: The heavy and ever rising burden of non-communicable diseases (NCDs) in low- and middle-income countries (LMICs) warrants interventions to reduce their underlying risk factors, which are often linked to lifestyles. To effectively supplement nationwide policies with targeted interventions...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134821/ https://www.ncbi.nlm.nih.gov/pubmed/34016072 http://dx.doi.org/10.1186/s12889-021-11014-1 |
Sumario: | BACKGROUND: The heavy and ever rising burden of non-communicable diseases (NCDs) in low- and middle-income countries (LMICs) warrants interventions to reduce their underlying risk factors, which are often linked to lifestyles. To effectively supplement nationwide policies with targeted interventions, it is important to know how these risk factors are distributed across socioeconomic segments of populations in LMICs. This study quantifies the prevalence and socioeconomic inequalities in lifestyle risk factors in LMICs, to identify policy priorities conducive to the Sustainable Development Goal of a one third reduction in deaths from NCDs by 2030. METHODS: Data from 1,278,624 adult respondents to Demographic & Health Surveys across 22 LMICs between 2013 and 2018 are used to estimate crude prevalence rates and socioeconomic inequalities in tobacco use, overweight, harmful alcohol use and the clustering of these three in a household. Inequalities are measured by a concentration index and correlated with the percentage of GDP spent on health. We estimate a multilevel model to examine associations of individual characteristics with the different lifestyle risk factors. RESULTS: The prevalence of tobacco use among men ranges from 59.6% (Armenia) to 6.6% (Nigeria). The highest level of overweight among women is 83.7% (Egypt) while this is less than 12% in Burundi, Chad and Timor-Leste. 82.5% of women in Burundi report that their partner is “often or sometimes drunk” compared to 1.3% in Gambia. Tobacco use is concentrated among the poor, except for the low share of men smoking in Nigeria. Overweight, however, is concentrated among the better off, especially in Tanzania and Zimbabwe (Erreygers Index (EI) 0.227 and 0.232). Harmful alcohol use is more concentrated among the better off in Nigeria (EI 0.127), while Chad, Rwanda and Togo show an unequal pro-poor distribution (EI respectively − 0.147, − 0.210, − 0.266). Cambodia exhibits the largest socioeconomic inequality in unhealthy household behaviour (EI − 0.253). The multilevel analyses confirm that in LMICs, tobacco and alcohol use are largely concentrated among the poor, while overweight is concentrated among the better-off. The associations between the share of GDP spent on health and the socioeconomical distribution of lifestyle factors are multidirectional. CONCLUSIONS: This study emphasizes the importance of lifestyle risk factors in LMICs and the socioeconomic variation therein. Given the different socioeconomic patterns in lifestyle risk factors - overweight patters in LMICs differ considerably from those in high income countries- tailored interventions towards specific high-risk populations are warranted to supplement nationwide policies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12889-021-11014-1. |
---|