Cargando…
Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks
Microstructural evolution is a key aspect of understanding and exploiting the processing-structure-property relationship of materials. Modeling microstructure evolution usually relies on coarse-grained simulations with evolution principles described by partial differential equations (PDEs). Here we...
Autores principales: | Yang, Kaiqi, Cao, Yifan, Zhang, Youtian, Fan, Shaoxun, Tang, Ming, Aberg, Daniel, Sadigh, Babak, Zhou, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8134942/ https://www.ncbi.nlm.nih.gov/pubmed/34036288 http://dx.doi.org/10.1016/j.patter.2021.100243 |
Ejemplares similares
-
PhyGCN: Pre-trained Hypergraph Convolutional Neural Networks with Self-supervised Learning
por: Deng, Yihe, et al.
Publicado: (2023) -
Weakly-supervised convolutional neural networks for multimodal image registration
por: Hu, Yipeng, et al.
Publicado: (2018) -
Brain CT registration using hybrid supervised convolutional neural network
por: Yuan, Hongmei, et al.
Publicado: (2021) -
Weakly-supervised convolutional neural networks of renal tumor segmentation in abdominal CTA images
por: Yang, Guanyu, et al.
Publicado: (2020) -
Supervised Sequence Labelling with Recurrent Neural Networks
por: Graves, Alex
Publicado: (2012)