Cargando…
Real-time electronic health record mortality prediction during the COVID-19 pandemic: a prospective cohort study
OBJECTIVE: To rapidly develop, validate, and implement a novel real-time mortality score for the COVID-19 pandemic that improves upon sequential organ failure assessment (SOFA) for decision support for a Crisis Standards of Care team. MATERIALS AND METHODS: We developed, verified, and deployed a sta...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136054/ https://www.ncbi.nlm.nih.gov/pubmed/33973011 http://dx.doi.org/10.1093/jamia/ocab100 |
_version_ | 1783695372127830016 |
---|---|
author | Sottile, Peter D Albers, David DeWitt, Peter E Russell, Seth Stroh, J N Kao, David P Adrian, Bonnie Levine, Matthew E Mooney, Ryan Larchick, Lenny Kutner, Jean S Wynia, Matthew K Glasheen, Jeffrey J Bennett, Tellen D |
author_facet | Sottile, Peter D Albers, David DeWitt, Peter E Russell, Seth Stroh, J N Kao, David P Adrian, Bonnie Levine, Matthew E Mooney, Ryan Larchick, Lenny Kutner, Jean S Wynia, Matthew K Glasheen, Jeffrey J Bennett, Tellen D |
author_sort | Sottile, Peter D |
collection | PubMed |
description | OBJECTIVE: To rapidly develop, validate, and implement a novel real-time mortality score for the COVID-19 pandemic that improves upon sequential organ failure assessment (SOFA) for decision support for a Crisis Standards of Care team. MATERIALS AND METHODS: We developed, verified, and deployed a stacked generalization model to predict mortality using data available in the electronic health record (EHR) by combining 5 previously validated scores and additional novel variables reported to be associated with COVID-19-specific mortality. We verified the model with prospectively collected data from 12 hospitals in Colorado between March 2020 and July 2020. We compared the area under the receiver operator curve (AUROC) for the new model to the SOFA score and the Charlson Comorbidity Index. RESULTS: The prospective cohort included 27 296 encounters, of which 1358 (5.0%) were positive for SARS-CoV-2, 4494 (16.5%) required intensive care unit care, 1480 (5.4%) required mechanical ventilation, and 717 (2.6%) ended in death. The Charlson Comorbidity Index and SOFA scores predicted mortality with an AUROC of 0.72 and 0.90, respectively. Our novel score predicted mortality with AUROC 0.94. In the subset of patients with COVID-19, the stacked model predicted mortality with AUROC 0.90, whereas SOFA had AUROC of 0.85. DISCUSSION: Stacked regression allows a flexible, updatable, live-implementable, ethically defensible predictive analytics tool for decision support that begins with validated models and includes only novel information that improves prediction. CONCLUSION: We developed and validated an accurate in-hospital mortality prediction score in a live EHR for automatic and continuous calculation using a novel model that improved upon SOFA. |
format | Online Article Text |
id | pubmed-8136054 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-81360542021-05-21 Real-time electronic health record mortality prediction during the COVID-19 pandemic: a prospective cohort study Sottile, Peter D Albers, David DeWitt, Peter E Russell, Seth Stroh, J N Kao, David P Adrian, Bonnie Levine, Matthew E Mooney, Ryan Larchick, Lenny Kutner, Jean S Wynia, Matthew K Glasheen, Jeffrey J Bennett, Tellen D J Am Med Inform Assoc Research and Applications OBJECTIVE: To rapidly develop, validate, and implement a novel real-time mortality score for the COVID-19 pandemic that improves upon sequential organ failure assessment (SOFA) for decision support for a Crisis Standards of Care team. MATERIALS AND METHODS: We developed, verified, and deployed a stacked generalization model to predict mortality using data available in the electronic health record (EHR) by combining 5 previously validated scores and additional novel variables reported to be associated with COVID-19-specific mortality. We verified the model with prospectively collected data from 12 hospitals in Colorado between March 2020 and July 2020. We compared the area under the receiver operator curve (AUROC) for the new model to the SOFA score and the Charlson Comorbidity Index. RESULTS: The prospective cohort included 27 296 encounters, of which 1358 (5.0%) were positive for SARS-CoV-2, 4494 (16.5%) required intensive care unit care, 1480 (5.4%) required mechanical ventilation, and 717 (2.6%) ended in death. The Charlson Comorbidity Index and SOFA scores predicted mortality with an AUROC of 0.72 and 0.90, respectively. Our novel score predicted mortality with AUROC 0.94. In the subset of patients with COVID-19, the stacked model predicted mortality with AUROC 0.90, whereas SOFA had AUROC of 0.85. DISCUSSION: Stacked regression allows a flexible, updatable, live-implementable, ethically defensible predictive analytics tool for decision support that begins with validated models and includes only novel information that improves prediction. CONCLUSION: We developed and validated an accurate in-hospital mortality prediction score in a live EHR for automatic and continuous calculation using a novel model that improved upon SOFA. Oxford University Press 2021-09-02 /pmc/articles/PMC8136054/ /pubmed/33973011 http://dx.doi.org/10.1093/jamia/ocab100 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_modelThis article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
spellingShingle | Research and Applications Sottile, Peter D Albers, David DeWitt, Peter E Russell, Seth Stroh, J N Kao, David P Adrian, Bonnie Levine, Matthew E Mooney, Ryan Larchick, Lenny Kutner, Jean S Wynia, Matthew K Glasheen, Jeffrey J Bennett, Tellen D Real-time electronic health record mortality prediction during the COVID-19 pandemic: a prospective cohort study |
title | Real-time electronic health record mortality prediction during the COVID-19 pandemic: a prospective cohort study |
title_full | Real-time electronic health record mortality prediction during the COVID-19 pandemic: a prospective cohort study |
title_fullStr | Real-time electronic health record mortality prediction during the COVID-19 pandemic: a prospective cohort study |
title_full_unstemmed | Real-time electronic health record mortality prediction during the COVID-19 pandemic: a prospective cohort study |
title_short | Real-time electronic health record mortality prediction during the COVID-19 pandemic: a prospective cohort study |
title_sort | real-time electronic health record mortality prediction during the covid-19 pandemic: a prospective cohort study |
topic | Research and Applications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136054/ https://www.ncbi.nlm.nih.gov/pubmed/33973011 http://dx.doi.org/10.1093/jamia/ocab100 |
work_keys_str_mv | AT sottilepeterd realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT albersdavid realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT dewittpetere realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT russellseth realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT strohjn realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT kaodavidp realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT adrianbonnie realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT levinematthewe realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT mooneyryan realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT larchicklenny realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT kutnerjeans realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT wyniamatthewk realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT glasheenjeffreyj realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy AT bennetttellend realtimeelectronichealthrecordmortalitypredictionduringthecovid19pandemicaprospectivecohortstudy |