Cargando…
A Bayesian approach to time-varying latent strengths in pairwise comparisons
The famous Bradley-Terry model for pairwise comparisons is widely used for ranking objects and is often applied to sports data. In this paper we extend the Bradley-Terry model by allowing time-varying latent strengths of compared objects. The time component is modelled with barycentric rational inte...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136743/ https://www.ncbi.nlm.nih.gov/pubmed/34014996 http://dx.doi.org/10.1371/journal.pone.0251945 |
Sumario: | The famous Bradley-Terry model for pairwise comparisons is widely used for ranking objects and is often applied to sports data. In this paper we extend the Bradley-Terry model by allowing time-varying latent strengths of compared objects. The time component is modelled with barycentric rational interpolation and Gaussian processes. We also allow for the inclusion of additional information in the form of outcome probabilities. Our models are evaluated and compared on toy data set and real sports data from ATP tennis matches and NBA games. We demonstrated that using Gaussian processes is advantageous compared to barycentric rational interpolation as they are more flexible to model discontinuities and are less sensitive to initial parameters settings. However, all investigated models proved to be robust to over-fitting and perform well with situations of volatile and of constant latent strengths. When using barycentric rational interpolation it has turned out that applying Bayesian approach gives better results than by using MLE. Performance of the models is further improved by incorporating the outcome probabilities. |
---|