Cargando…
Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration
With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discov...
Autores principales: | Wang, Weixu, Tan, Huanhuan, Sun, Mingwan, Han, Yiqing, Chen, Wei, Qiu, Shengnu, Zheng, Ke, Wei, Gang, Ni, Ting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136772/ https://www.ncbi.nlm.nih.gov/pubmed/33619563 http://dx.doi.org/10.1093/nar/gkab089 |
Ejemplares similares
-
Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench
por: Chazarra-Gil, Ruben, et al.
Publicado: (2021) -
Inferring population structure and relationship using minimal independent evolutionary markers in Y-chromosome: a hybrid approach of recursive feature selection for hierarchical clustering
por: Srivastava, Amit Kumar, et al.
Publicado: (2014) -
svaseq: removing batch effects and other unwanted noise from sequencing data
por: Leek, Jeffrey T.
Publicado: (2014) -
Deciphering the transcriptional regulation of microRNA genes in humans with ACTLocater
por: Xiao, Zhen-Dong, et al.
Publicado: (2013) -
Incorporating cell hierarchy to decipher the functional diversity of single cells
por: Chen, Lingxi, et al.
Publicado: (2022)