Cargando…
GraphBind: protein structural context embedded rules learned by hierarchical graph neural networks for recognizing nucleic-acid-binding residues
Knowledge of the interactions between proteins and nucleic acids is the basis of understanding various biological activities and designing new drugs. How to accurately identify the nucleic-acid-binding residues remains a challenging task. In this paper, we propose an accurate predictor, GraphBind, f...
Autores principales: | Xia, Ying, Xia, Chun-Qiu, Pan, Xiaoyong, Shen, Hong-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136796/ https://www.ncbi.nlm.nih.gov/pubmed/33577689 http://dx.doi.org/10.1093/nar/gkab044 |
Ejemplares similares
-
GraphProt: modeling binding preferences of RNA-binding proteins
por: Maticzka, Daniel, et al.
Publicado: (2014) -
GeoBind: segmentation of nucleic acid binding interface on protein surface with geometric deep learning
por: Li, Pengpai, et al.
Publicado: (2023) -
Sequence- and structural-selective nucleic acid binding revealed by the melting of mixtures
por: Shi, Xiaochun, et al.
Publicado: (2006) -
Identification and classification of ncRNA molecules using graph properties
por: Childs, Liam, et al.
Publicado: (2009) -
CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations
por: Doğan, Tunca, et al.
Publicado: (2021)