Cargando…

A systems-level gene regulatory network model for Plasmodium falciparum

Many of the gene regulatory processes of Plasmodium falciparum, the deadliest malaria parasite, remain poorly understood. To develop a comprehensive guide for exploring this organism's gene regulatory network, we generated a systems-level model of P. falciparum gene regulation using a well-vali...

Descripción completa

Detalles Bibliográficos
Autores principales: Neal, Maxwell L, Wei, Ling, Peterson, Eliza, Arrieta-Ortiz, Mario L, Danziger, Samuel A, Baliga, Nitin S, Kaushansky, Alexis, Aitchison, John D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136813/
https://www.ncbi.nlm.nih.gov/pubmed/33450011
http://dx.doi.org/10.1093/nar/gkaa1245
_version_ 1783695504173957120
author Neal, Maxwell L
Wei, Ling
Peterson, Eliza
Arrieta-Ortiz, Mario L
Danziger, Samuel A
Baliga, Nitin S
Kaushansky, Alexis
Aitchison, John D
author_facet Neal, Maxwell L
Wei, Ling
Peterson, Eliza
Arrieta-Ortiz, Mario L
Danziger, Samuel A
Baliga, Nitin S
Kaushansky, Alexis
Aitchison, John D
author_sort Neal, Maxwell L
collection PubMed
description Many of the gene regulatory processes of Plasmodium falciparum, the deadliest malaria parasite, remain poorly understood. To develop a comprehensive guide for exploring this organism's gene regulatory network, we generated a systems-level model of P. falciparum gene regulation using a well-validated, machine-learning approach for predicting interactions between transcription regulators and their targets. The resulting network accurately predicts expression levels of transcriptionally coherent gene regulatory programs in independent transcriptomic data sets from parasites collected by different research groups in diverse laboratory and field settings. Thus, our results indicate that our gene regulatory model has predictive power and utility as a hypothesis-generating tool for illuminating clinically relevant gene regulatory mechanisms within P. falciparum. Using the set of regulatory programs we identified, we also investigated correlates of artemisinin resistance based on gene expression coherence. We report that resistance is associated with incoherent expression across many regulatory programs, including those controlling genes associated with erythrocyte-host engagement. These results suggest that parasite populations with reduced artemisinin sensitivity are more transcriptionally heterogenous. This pattern is consistent with a model where the parasite utilizes bet-hedging strategies to diversify the population, rendering a subpopulation more able to navigate drug treatment.
format Online
Article
Text
id pubmed-8136813
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-81368132021-05-25 A systems-level gene regulatory network model for Plasmodium falciparum Neal, Maxwell L Wei, Ling Peterson, Eliza Arrieta-Ortiz, Mario L Danziger, Samuel A Baliga, Nitin S Kaushansky, Alexis Aitchison, John D Nucleic Acids Res Computational Biology Many of the gene regulatory processes of Plasmodium falciparum, the deadliest malaria parasite, remain poorly understood. To develop a comprehensive guide for exploring this organism's gene regulatory network, we generated a systems-level model of P. falciparum gene regulation using a well-validated, machine-learning approach for predicting interactions between transcription regulators and their targets. The resulting network accurately predicts expression levels of transcriptionally coherent gene regulatory programs in independent transcriptomic data sets from parasites collected by different research groups in diverse laboratory and field settings. Thus, our results indicate that our gene regulatory model has predictive power and utility as a hypothesis-generating tool for illuminating clinically relevant gene regulatory mechanisms within P. falciparum. Using the set of regulatory programs we identified, we also investigated correlates of artemisinin resistance based on gene expression coherence. We report that resistance is associated with incoherent expression across many regulatory programs, including those controlling genes associated with erythrocyte-host engagement. These results suggest that parasite populations with reduced artemisinin sensitivity are more transcriptionally heterogenous. This pattern is consistent with a model where the parasite utilizes bet-hedging strategies to diversify the population, rendering a subpopulation more able to navigate drug treatment. Oxford University Press 2021-01-15 /pmc/articles/PMC8136813/ /pubmed/33450011 http://dx.doi.org/10.1093/nar/gkaa1245 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Computational Biology
Neal, Maxwell L
Wei, Ling
Peterson, Eliza
Arrieta-Ortiz, Mario L
Danziger, Samuel A
Baliga, Nitin S
Kaushansky, Alexis
Aitchison, John D
A systems-level gene regulatory network model for Plasmodium falciparum
title A systems-level gene regulatory network model for Plasmodium falciparum
title_full A systems-level gene regulatory network model for Plasmodium falciparum
title_fullStr A systems-level gene regulatory network model for Plasmodium falciparum
title_full_unstemmed A systems-level gene regulatory network model for Plasmodium falciparum
title_short A systems-level gene regulatory network model for Plasmodium falciparum
title_sort systems-level gene regulatory network model for plasmodium falciparum
topic Computational Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136813/
https://www.ncbi.nlm.nih.gov/pubmed/33450011
http://dx.doi.org/10.1093/nar/gkaa1245
work_keys_str_mv AT nealmaxwelll asystemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT weiling asystemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT petersoneliza asystemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT arrietaortizmariol asystemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT danzigersamuela asystemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT baliganitins asystemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT kaushanskyalexis asystemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT aitchisonjohnd asystemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT nealmaxwelll systemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT weiling systemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT petersoneliza systemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT arrietaortizmariol systemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT danzigersamuela systemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT baliganitins systemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT kaushanskyalexis systemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum
AT aitchisonjohnd systemslevelgeneregulatorynetworkmodelforplasmodiumfalciparum