Cargando…
Rib fracture detection in computed tomography images using deep convolutional neural networks
To evaluate the rib fracture detection performance in computed tomography (CT) images using a software based on a deep convolutional neural network (DCNN) and compare it with the rib fracture diagnostic performance of doctors. We included CT images from 39 patients with thoracic injuries who underwe...
Autores principales: | Kaiume, Masafumi, Suzuki, Shigeru, Yasaka, Koichiro, Sugawara, Haruto, Shen, Yun, Katada, Yoshiaki, Ishikawa, Takuya, Fukui, Rika, Abe, Osamu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137061/ https://www.ncbi.nlm.nih.gov/pubmed/34011107 http://dx.doi.org/10.1097/MD.0000000000026024 |
Ejemplares similares
-
Metal artifacts reduction in computed tomography: A phantom study to compare the effectiveness of metal artifact reduction algorithm, model-based iterative reconstruction, and virtual monochromatic imaging
por: Ishikawa, Takuya, et al.
Publicado: (2020) -
Deep-learning reconstruction for the evaluation of lumbar spinal stenosis in computed tomography
por: Miyo, Rintaro, et al.
Publicado: (2023) -
Precision of quantitative computed tomography texture analysis using image filtering: A phantom study for scanner variability
por: Yasaka, Koichiro, et al.
Publicado: (2017) -
Improving detection performance of hepatocellular carcinoma and interobserver agreement for liver imaging reporting and data system on CT using deep learning reconstruction
por: Okimoto, Naomasa, et al.
Publicado: (2023) -
Image quality of mixed convolution kernel in thoracic computed tomography
por: Neubauer, Jakob, et al.
Publicado: (2016)