Cargando…
Data-driven approach to COVID-19 infection forecast for Nigeria using negative binomial regression model
COVID-19: the new wave of a global pandemic, is bringing about an increasing number of scientific efforts aimed at enabling governments to make informed decisions. In this paper, we explore the negative binomial regression model from the family of generalized linear models for the prediction of the...
Autores principales: | Olisah, Chollette C., Ilori, Olusoji O., Adelaja, Kunle, Usip, Patience U., Uzoechi, Lazarus O., Adeyanju, Ibrahim A., Odumuyiwa, Victor T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137713/ http://dx.doi.org/10.1016/B978-0-12-824536-1.00002-2 |
Ejemplares similares
-
Improved estimation in negative binomial regression
por: Kenne Pagui, Euloge Clovis, et al.
Publicado: (2022) -
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011) -
Negative binomial factor regression with application to microbiome data analysis
por: Mishra, Aditya K., et al.
Publicado: (2022) -
Zero inflated Poisson and negative binomial regression models: application in education
por: Salehi, Masoud, et al.
Publicado: (2015) -
Human mobility and coronavirus disease 2019 (COVID-19): a negative binomial regression analysis
por: Oztig, L.I., et al.
Publicado: (2020)