Cargando…
Event generation and statistical sampling for physics with deep generative models and a density information buffer
Simulating nature and in particular processes in particle physics require expensive computations and sometimes would take much longer than scientists can afford. Here, we explore ways to a solution for this problem by investigating recent advances in generative modeling and present a study for the g...
Autores principales: | Otten, Sydney, Caron, Sascha, de Swart, Wieske, van Beekveld, Melissa, Hendriks, Luc, van Leeuwen, Caspar, Podareanu, Damian, Ruiz de Austri, Roberto, Verheyen, Rob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137919/ https://www.ncbi.nlm.nih.gov/pubmed/34016982 http://dx.doi.org/10.1038/s41467-021-22616-z |
Ejemplares similares
-
Event Generation and Statistical Sampling with Deep Generative Models
por: Otten, Sydney
Publicado: (2019) -
Predicting atmospheric optical properties for radiative transfer computations using neural networks
por: Veerman, Menno A., et al.
Publicado: (2021) -
Monotonic Optimization of Dataflow Buffer Sizes
por: Hendriks, Martijn, et al.
Publicado: (2018) -
Collinear fragmentation at NNLL: generating functionals, groomed correlators and angularities
por: van Beekveld, Melissa, et al.
Publicado: (2023) -
Asymmetric Synthesis
of Second-Generation Light-Driven
Molecular Motors
por: van Leeuwen, Thomas, et al.
Publicado: (2017)