Cargando…
A method for benchmarking genetic screens reveals a predominant mitochondrial bias
We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138267/ https://www.ncbi.nlm.nih.gov/pubmed/34018332 http://dx.doi.org/10.15252/msb.202010013 |
_version_ | 1783695769410207744 |
---|---|
author | Rahman, Mahfuzur Billmann, Maximilian Costanzo, Michael Aregger, Michael Tong, Amy H Y Chan, Katherine Ward, Henry N Brown, Kevin R Andrews, Brenda J Boone, Charles Moffat, Jason Myers, Chad L |
author_facet | Rahman, Mahfuzur Billmann, Maximilian Costanzo, Michael Aregger, Michael Tong, Amy H Y Chan, Katherine Ward, Henry N Brown, Kevin R Andrews, Brenda J Boone, Charles Moffat, Jason Myers, Chad L |
author_sort | Rahman, Mahfuzur |
collection | PubMed |
description | We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene‐pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria‐associated signal within co‐essentiality networks derived from these data and explore the basis of this signal. Our analysis and time‐resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them. |
format | Online Article Text |
id | pubmed-8138267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-81382672021-06-03 A method for benchmarking genetic screens reveals a predominant mitochondrial bias Rahman, Mahfuzur Billmann, Maximilian Costanzo, Michael Aregger, Michael Tong, Amy H Y Chan, Katherine Ward, Henry N Brown, Kevin R Andrews, Brenda J Boone, Charles Moffat, Jason Myers, Chad L Mol Syst Biol Reports We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome‐wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene‐pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria‐associated signal within co‐essentiality networks derived from these data and explore the basis of this signal. Our analysis and time‐resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them. John Wiley and Sons Inc. 2021-05-20 /pmc/articles/PMC8138267/ /pubmed/34018332 http://dx.doi.org/10.15252/msb.202010013 Text en © 2021 The Authors. Published under the terms of the CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reports Rahman, Mahfuzur Billmann, Maximilian Costanzo, Michael Aregger, Michael Tong, Amy H Y Chan, Katherine Ward, Henry N Brown, Kevin R Andrews, Brenda J Boone, Charles Moffat, Jason Myers, Chad L A method for benchmarking genetic screens reveals a predominant mitochondrial bias |
title | A method for benchmarking genetic screens reveals a predominant mitochondrial bias |
title_full | A method for benchmarking genetic screens reveals a predominant mitochondrial bias |
title_fullStr | A method for benchmarking genetic screens reveals a predominant mitochondrial bias |
title_full_unstemmed | A method for benchmarking genetic screens reveals a predominant mitochondrial bias |
title_short | A method for benchmarking genetic screens reveals a predominant mitochondrial bias |
title_sort | method for benchmarking genetic screens reveals a predominant mitochondrial bias |
topic | Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138267/ https://www.ncbi.nlm.nih.gov/pubmed/34018332 http://dx.doi.org/10.15252/msb.202010013 |
work_keys_str_mv | AT rahmanmahfuzur amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT billmannmaximilian amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT costanzomichael amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT areggermichael amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT tongamyhy amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT chankatherine amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT wardhenryn amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT brownkevinr amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT andrewsbrendaj amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT boonecharles amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT moffatjason amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT myerschadl amethodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT rahmanmahfuzur methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT billmannmaximilian methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT costanzomichael methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT areggermichael methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT tongamyhy methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT chankatherine methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT wardhenryn methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT brownkevinr methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT andrewsbrendaj methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT boonecharles methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT moffatjason methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias AT myerschadl methodforbenchmarkinggeneticscreensrevealsapredominantmitochondrialbias |