Cargando…

A critical look into different salt removal treatments for the production of high value pigments and fatty acids from marine microalgae Chlorella vulgaris (NIOT-74)

The prime challenge in seawater culture of microalgae for high value biomolecules production is presence of salt. Hence, twelve different salt removal treatments were evaluated for their impact on the lutein, total carotenoid, chlorophyll yields and fatty acid profile of marine microalgae Chlorella...

Descripción completa

Detalles Bibliográficos
Autores principales: J. T., Mary Leema, T., Persia Jothy, D., Magesh Peter, T.S., Kumar, G., Dharani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138460/
https://www.ncbi.nlm.nih.gov/pubmed/34036053
http://dx.doi.org/10.1016/j.btre.2021.e00627
Descripción
Sumario:The prime challenge in seawater culture of microalgae for high value biomolecules production is presence of salt. Hence, twelve different salt removal treatments were evaluated for their impact on the lutein, total carotenoid, chlorophyll yields and fatty acid profile of marine microalgae Chlorella vulgaris (NIOT-74). The effectiveness of different treatments on salt removal was also visualized with the aid of Scanning Electron Microscope (SEM). Among the tested treatments, washing the algal biomass with 0.5 % HCl augmented the lutein (11.56 mg/g) and total carotenoid yield (60.88 mg/g) 1.82 and 1.86 fold respectively, in comparison to untreated control. Highest chlorophyll content (30.64 mg/g) was noticed in the distilled water wash treatment. Different salt removal treatments also impacted the fatty acid profile and degree of unsaturation of the fatty acids significantly. This study thus, signified the importance of salt removal treatments for the commercial production of biomolecules from marine microalgae cultured in natural seawater.