Cargando…

Deep learning predicts gene expression as an intermediate data modality to identify susceptibility patterns in Mycobacterium tuberculosis infected Diversity Outbred mice

BACKGROUND: Machine learning sustains successful application to many diagnostic and prognostic problems in computational histopathology. Yet, few efforts have been made to model gene expression from histopathology. This study proposes a methodology which predicts selected gene expression values (mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Tavolara, Thomas E., Niazi, M.K.K., Gower, Adam C., Ginese, Melanie, Beamer, Gillian, Gurcan, Metin N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138606/
https://www.ncbi.nlm.nih.gov/pubmed/34000621
http://dx.doi.org/10.1016/j.ebiom.2021.103388
Descripción
Sumario:BACKGROUND: Machine learning sustains successful application to many diagnostic and prognostic problems in computational histopathology. Yet, few efforts have been made to model gene expression from histopathology. This study proposes a methodology which predicts selected gene expression values (microarray) from haematoxylin and eosin whole-slide images as an intermediate data modality to identify fulminant-like pulmonary tuberculosis ('supersusceptible') in an experimentally infected cohort of Diversity Outbred mice (n=77). METHODS: Gradient-boosted trees were utilized as a novel feature selector to identify gene transcripts predictive of fulminant-like pulmonary tuberculosis. A novel attention-based multiple instance learning model for regression was used to predict selected genes' expression from whole-slide images. Gene expression predictions were shown to be sufficiently replicated to identify supersusceptible mice using gradient-boosted trees trained on ground truth gene expression data. FINDINGS: The model was accurate, showing high positive correlations with ground truth gene expression on both cross-validation (n = 77, 0.63 ≤ ρ ≤ 0.84) and external testing sets (n = 33, 0.65 ≤ ρ ≤ 0.84). The sensitivity and specificity for gene expression predictions to identify supersusceptible mice (n=77) were 0.88 and 0.95, respectively, and for an external set of mice (n=33) 0.88 and 0.93, respectively. IMPLICATIONS: Our methodology maps histopathology to gene expression with sufficient accuracy to predict a clinical outcome. The proposed methodology exemplifies a computational template for gene expression panels, in which relatively inexpensive and widely available tissue histopathology may be mapped to specific genes' expression to serve as a diagnostic or prognostic tool. FUNDING: National Institutes of Health and American Lung Association.