Cargando…
Deep learning predicts gene expression as an intermediate data modality to identify susceptibility patterns in Mycobacterium tuberculosis infected Diversity Outbred mice
BACKGROUND: Machine learning sustains successful application to many diagnostic and prognostic problems in computational histopathology. Yet, few efforts have been made to model gene expression from histopathology. This study proposes a methodology which predicts selected gene expression values (mic...
Autores principales: | Tavolara, Thomas E., Niazi, M.K.K., Gower, Adam C., Ginese, Melanie, Beamer, Gillian, Gurcan, Metin N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138606/ https://www.ncbi.nlm.nih.gov/pubmed/34000621 http://dx.doi.org/10.1016/j.ebiom.2021.103388 |
Ejemplares similares
-
Automatic discovery of clinically interpretable imaging biomarkers for Mycobacterium tuberculosis supersusceptibility using deep learning
por: Tavolara, Thomas E., et al.
Publicado: (2020) -
CXCL1: A new diagnostic biomarker for human tuberculosis discovered using Diversity Outbred mice
por: Koyuncu, Deniz, et al.
Publicado: (2021) -
Attention2majority: Weak multiple instance learning for regenerative kidney grading on whole slide images
por: Su, Ziyu, et al.
Publicado: (2022) -
Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice
por: Niazi, Muhammad K. K., et al.
Publicado: (2015) -
Genetically diverse mice are novel and valuable models of age-associated susceptibility to Mycobacterium tuberculosis
por: Harrison, David E, et al.
Publicado: (2014)