Cargando…
Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury
BACKGROUND AND OBJECTIVES: Implantation of bone marrow-derived mesenchymal stem cells (BMSCs) has been recognized as an effective therapy for attenuating acute lung injury (ALI). This study aims to discover microRNA (miRNA)-mediated improvement of BMSCs-based therapeutic effects. METHODS AND RESULTS...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Stem Cell Research
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138660/ https://www.ncbi.nlm.nih.gov/pubmed/33632989 http://dx.doi.org/10.15283/ijsc20136 |
_version_ | 1783695854866006016 |
---|---|
author | Zhang, Peng Liu, Linghua Yao, Lei Song, Xiaoxue |
author_facet | Zhang, Peng Liu, Linghua Yao, Lei Song, Xiaoxue |
author_sort | Zhang, Peng |
collection | PubMed |
description | BACKGROUND AND OBJECTIVES: Implantation of bone marrow-derived mesenchymal stem cells (BMSCs) has been recognized as an effective therapy for attenuating acute lung injury (ALI). This study aims to discover microRNA (miRNA)-mediated improvement of BMSCs-based therapeutic effects. METHODS AND RESULTS: Mice were treated with lipopolysaccharide (LPS) for induction of ALI. BMSCs with lentivirus-mediated expression of miR-23b-3p or fibroblast growth factor 2 (FGF2) were intratracheally injected into the mice with ALI. The expressions of miR-23b-3p, FGF2, Occludin, and surfactant protein C (SPC) in lung tissues were analyzed by immunoblot or quantitative reverse transcription polymerase chain reaction. Histopathological changes in lung tissues were observed via hematoxylin-eosin staining. Lung edema was assessed by the ratio of lung wet weight/body weight (LWW/BW). The levels of interleukin (IL)-1β, IL-6, IL-4, and IL-8 in bronchoalveolar lavage fluid (BALF) were assessed by ELISA. LPS injection downregulated the expressions of miR-23b-3p, SPC and Occludin in the lung tissues, increased the LWW/BW ratio and aggravated histopathological abnormalities, while upregulating IL-1β, IL-6, IL-4, and IL-8 in the BALF. Upregulated miR-23b-3p counteracted LPS-induced effects, whereas downregulated miR-23b-3p intensified LPS-induced effects. FGF2, which was downregulated by miR-23b-3p upregulation, was a target gene of miR-23b-3p. Overexpressing FGF2 downregulated the expressions of miR-23b-3p, SPC and Occludin, increased the LWW/BW ratio and aggravated histopathological abnormalities, while upregulating IL-1β, IL-6, IL-4, and IL-8, and it offset miR-23b-3p upregulation-caused effects on the ALI mice. CONCLUSIONS: Overexpression of miR-23b-3p in BMSCs strengthened BMSC-mediated protection against LPS-induced mouse acute lung injury via targeting FGF2. |
format | Online Article Text |
id | pubmed-8138660 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Korean Society for Stem Cell Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-81386602021-05-28 Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury Zhang, Peng Liu, Linghua Yao, Lei Song, Xiaoxue Int J Stem Cells Original Article BACKGROUND AND OBJECTIVES: Implantation of bone marrow-derived mesenchymal stem cells (BMSCs) has been recognized as an effective therapy for attenuating acute lung injury (ALI). This study aims to discover microRNA (miRNA)-mediated improvement of BMSCs-based therapeutic effects. METHODS AND RESULTS: Mice were treated with lipopolysaccharide (LPS) for induction of ALI. BMSCs with lentivirus-mediated expression of miR-23b-3p or fibroblast growth factor 2 (FGF2) were intratracheally injected into the mice with ALI. The expressions of miR-23b-3p, FGF2, Occludin, and surfactant protein C (SPC) in lung tissues were analyzed by immunoblot or quantitative reverse transcription polymerase chain reaction. Histopathological changes in lung tissues were observed via hematoxylin-eosin staining. Lung edema was assessed by the ratio of lung wet weight/body weight (LWW/BW). The levels of interleukin (IL)-1β, IL-6, IL-4, and IL-8 in bronchoalveolar lavage fluid (BALF) were assessed by ELISA. LPS injection downregulated the expressions of miR-23b-3p, SPC and Occludin in the lung tissues, increased the LWW/BW ratio and aggravated histopathological abnormalities, while upregulating IL-1β, IL-6, IL-4, and IL-8 in the BALF. Upregulated miR-23b-3p counteracted LPS-induced effects, whereas downregulated miR-23b-3p intensified LPS-induced effects. FGF2, which was downregulated by miR-23b-3p upregulation, was a target gene of miR-23b-3p. Overexpressing FGF2 downregulated the expressions of miR-23b-3p, SPC and Occludin, increased the LWW/BW ratio and aggravated histopathological abnormalities, while upregulating IL-1β, IL-6, IL-4, and IL-8, and it offset miR-23b-3p upregulation-caused effects on the ALI mice. CONCLUSIONS: Overexpression of miR-23b-3p in BMSCs strengthened BMSC-mediated protection against LPS-induced mouse acute lung injury via targeting FGF2. Korean Society for Stem Cell Research 2021-02-28 /pmc/articles/PMC8138660/ /pubmed/33632989 http://dx.doi.org/10.15283/ijsc20136 Text en Copyright © 2021 by the Korean Society for Stem Cell Research https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Zhang, Peng Liu, Linghua Yao, Lei Song, Xiaoxue Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury |
title | Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury |
title_full | Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury |
title_fullStr | Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury |
title_full_unstemmed | Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury |
title_short | Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury |
title_sort | improved differentiation ability and therapeutic effect of mir-23a-3p expressing bone marrow-derived mesenchymal stem cells in mice model with acute lung injury |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138660/ https://www.ncbi.nlm.nih.gov/pubmed/33632989 http://dx.doi.org/10.15283/ijsc20136 |
work_keys_str_mv | AT zhangpeng improveddifferentiationabilityandtherapeuticeffectofmir23a3pexpressingbonemarrowderivedmesenchymalstemcellsinmicemodelwithacutelunginjury AT liulinghua improveddifferentiationabilityandtherapeuticeffectofmir23a3pexpressingbonemarrowderivedmesenchymalstemcellsinmicemodelwithacutelunginjury AT yaolei improveddifferentiationabilityandtherapeuticeffectofmir23a3pexpressingbonemarrowderivedmesenchymalstemcellsinmicemodelwithacutelunginjury AT songxiaoxue improveddifferentiationabilityandtherapeuticeffectofmir23a3pexpressingbonemarrowderivedmesenchymalstemcellsinmicemodelwithacutelunginjury |