Cargando…
Use of Machine Learning Algorithms to Predict the Understandability of Health Education Materials: Development and Evaluation Study
BACKGROUND: Improving the understandability of health information can significantly increase the cost-effectiveness and efficiency of health education programs for vulnerable populations. There is a pressing need to develop clinically informed computerized tools to enable rapid, reliable assessment...
Autores principales: | Ji, Meng, Liu, Yanmeng, Zhao, Mengdan, Lyu, Ziqing, Zhang, Boren, Luo, Xin, Li, Yanlin, Zhong, Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138706/ https://www.ncbi.nlm.nih.gov/pubmed/33955834 http://dx.doi.org/10.2196/28413 |
Ejemplares similares
-
Predicting Health Material Accessibility: Development of Machine Learning Algorithms
por: Ji, Meng, et al.
Publicado: (2021) -
Correction: Predicting Health Material Accessibility: Development of Machine Learning Algorithms
por: Ji, Meng, et al.
Publicado: (2021) -
Predicting Writing Styles of Web-Based Materials for Children’s Health Education Using the Selection of Semantic Features: Machine Learning Approach
por: Xie, Wenxiu, et al.
Publicado: (2021) -
The
Role of Machine Learning in the Understanding
and Design of Materials
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2020) -
Machine Learning Algorithms for understanding the determinants of under-five Mortality
por: Saroj, Rakesh Kumar, et al.
Publicado: (2022)