Cargando…
A statistical framework for predicting critical regions of p53-dependent enhancers
P53 is the ‘guardian of the genome’ and is responsible for regulating cell cycle and apoptosis. The genomic p53 binding regions, where activating transcriptional factors and cofactors like p300 simultaneously bind, are called ‘p53-dependent enhancers’, which play an important role in tumorigenesis....
Autores principales: | Niu, Xiaohui, Deng, Kaixuan, Liu, Lifen, Yang, Kun, Hu, Xuehai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138796/ https://www.ncbi.nlm.nih.gov/pubmed/32392580 http://dx.doi.org/10.1093/bib/bbaa053 |
Ejemplares similares
-
Characterization on the oncogenic effect of the missense mutations of p53 via machine learning
por: Pan, Qisheng, et al.
Publicado: (2023) -
TP53_PROF: a machine learning model to predict impact of missense mutations in TP53
por: Ben-Cohen, Gil, et al.
Publicado: (2022) -
Sincast: a computational framework to predict cell identities in single-cell transcriptomes using bulk atlases as references
por: Deng, Yidi, et al.
Publicado: (2022) -
Systematic benchmarking of statistical methods to assess differential expression of circular RNAs
por: Buratin, Alessia, et al.
Publicado: (2023) -
CAFU: a Galaxy framework for exploring unmapped RNA-Seq data
por: Chen, Siyuan, et al.
Publicado: (2019)