Cargando…
Large-scale benchmark study of survival prediction methods using multi-omics data
Multi-omics data, that is, datasets containing different types of high-dimensional molecular variables, are increasingly often generated for the investigation of various diseases. Nevertheless, questions remain regarding the usefulness of multi-omics data for the prediction of disease outcomes such...
Autores principales: | Herrmann, Moritz, Probst, Philipp, Hornung, Roman, Jurinovic, Vindi, Boulesteix, Anne-Laure |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138887/ https://www.ncbi.nlm.nih.gov/pubmed/32823283 http://dx.doi.org/10.1093/bib/bbaa167 |
Ejemplares similares
-
Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data
por: Klau, Simon, et al.
Publicado: (2018) -
Random forest versus logistic regression: a large-scale benchmark experiment
por: Couronné, Raphael, et al.
Publicado: (2018) -
Benchmark study of feature selection strategies for multi-omics data
por: Li, Yingxia, et al.
Publicado: (2022) -
Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment
por: Hornung, Roman, et al.
Publicado: (2016) -
Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets
por: Argelaguet, Ricard, et al.
Publicado: (2018)