Cargando…
A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data
Gene regulatory network is a complicated set of interactions between genetic materials, which dictates how cells develop in living organisms and react to their surrounding environment. Robust comprehension of these interactions would help explain how cells function as well as predict their reactions...
Autores principales: | Nguyen, Hung, Tran, Duc, Tran, Bang, Pehlivan, Bahadir, Nguyen, Tin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8138892/ https://www.ncbi.nlm.nih.gov/pubmed/34020546 http://dx.doi.org/10.1093/bib/bbaa190 |
Ejemplares similares
-
A novel method for single-cell data imputation using subspace regression
por: Tran, Duc, et al.
Publicado: (2022) -
scCAN: single-cell clustering using autoencoder and network fusion
por: Tran, Bang, et al.
Publicado: (2022) -
A Comprehensive Survey of Tools and Software for Active Subnetwork Identification
por: Nguyen, Hung, et al.
Publicado: (2019) -
Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model
por: Wang, Jiacheng, et al.
Publicado: (2023) -
A robust and accurate single-cell data trajectory inference method using ensemble pseudotime
por: Zhang, Yifan, et al.
Publicado: (2023)