Cargando…
MichiGAN: sampling from disentangled representations of single-cell data using generative adversarial networks
Deep generative models such as variational autoencoders (VAEs) and generative adversarial networks (GANs) generate and manipulate high-dimensional images. We systematically assess the complementary strengths and weaknesses of these models on single-cell gene expression data. We also develop MichiGAN...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139054/ https://www.ncbi.nlm.nih.gov/pubmed/34016135 http://dx.doi.org/10.1186/s13059-021-02373-4 |
Sumario: | Deep generative models such as variational autoencoders (VAEs) and generative adversarial networks (GANs) generate and manipulate high-dimensional images. We systematically assess the complementary strengths and weaknesses of these models on single-cell gene expression data. We also develop MichiGAN, a novel neural network that combines the strengths of VAEs and GANs to sample from disentangled representations without sacrificing data generation quality. We learn disentangled representations of three large single-cell RNA-seq datasets and use MichiGAN to sample from these representations. MichiGAN allows us to manipulate semantically distinct aspects of cellular identity and predict single-cell gene expression response to drug treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s13059-021-02373-4). |
---|