Cargando…
MichiGAN: sampling from disentangled representations of single-cell data using generative adversarial networks
Deep generative models such as variational autoencoders (VAEs) and generative adversarial networks (GANs) generate and manipulate high-dimensional images. We systematically assess the complementary strengths and weaknesses of these models on single-cell gene expression data. We also develop MichiGAN...
Autores principales: | Yu, Hengshi, Welch, Joshua D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139054/ https://www.ncbi.nlm.nih.gov/pubmed/34016135 http://dx.doi.org/10.1186/s13059-021-02373-4 |
Ejemplares similares
-
Application of Generative Adversarial Networks (GANs) to jet images
por: Paganini, Michela
Publicado: (2017) -
Manipulating Voice Attributes by Adversarial Learning of Structured Disentangled Representations
por: Benaroya, Laurent, et al.
Publicado: (2023) -
A Generative Adversarial Network (GAN) Technique for Internet of Medical Things Data
por: Vaccari, Ivan, et al.
Publicado: (2021) -
Seminar: Open challenges for improving Generative Adversarial Networks (GANs)
por: Goodfellow, Ian
Publicado: (2017) -
MB-GAN: Microbiome Simulation via Generative Adversarial Network
por: Rong, Ruichen, et al.
Publicado: (2021)