Cargando…

Neohesperidin promotes the osteogenic differentiation of bone mesenchymal stem cells by activating the Wnt/-catenin signaling pathway

BACKGROUND: Osteoporosis is a common disease in aging populations. However, osteoporosis treatment is still challenging. Here, we aimed to investigate the role of neohesperidin (NEO) in osteoporosis progression and the potential mechanism. METHODS: Bone mesenchymal stem cells (BMSCs) were isolated a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Yue-wen, Zhu, Wen-jun, Gu, Wei, Sun, Jun, Li, Zhi-qiang, Wei, Xiao-en
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139099/
https://www.ncbi.nlm.nih.gov/pubmed/34020675
http://dx.doi.org/10.1186/s13018-021-02468-5
Descripción
Sumario:BACKGROUND: Osteoporosis is a common disease in aging populations. However, osteoporosis treatment is still challenging. Here, we aimed to investigate the role of neohesperidin (NEO) in osteoporosis progression and the potential mechanism. METHODS: Bone mesenchymal stem cells (BMSCs) were isolated and treated with different concentrations of NEO (0, 10, 30, 100 M). Cell proliferation was analyzed by cell count kit-8 (CCK-8) assay. RNA-sequencing was performed on the isolated BMSCs with control and NEO treatment. Differentially expressed genes were obtained by R software. Alkaline phosphatase (ALP) staining and Alizarin red staining (ARS) were performed to assess the osteogenic capacity of the NEO. qRT-PCR was used to detect the expression of osteoblast markers. Western blot was used to evaluate the protein levels in BMSCs. RESULTS: NEO treatment significantly improved hBMSC proliferation at different time points, particularly when cells were incubated with 30 M NEO (P < 0.05). NEO dose-dependently increased the ALP activity and calcium deposition than the control group (P < 0.05). A total of 855 differentially expressed genes were identified according to the significance criteria of log(2) (fold change) > 1 and adj P < 0.05. DKK1 partially reversed the promotion effects of NEO on osteogenic differentiation of BMSCs. NEO increased levels of the -catenin protein in BMSCs. CONCLUSION: NEO plays a positive role in promoting osteogenic differentiation of BMSCs, which was related with activation of Wnt/-catenin pathway.