Cargando…
ML-AdVInfect: A Machine-Learning Based Adenoviral Infection Predictor
Adenoviruses (AdVs) constitute a diverse family with many pathogenic types that infect a broad range of hosts. Understanding the pathogenesis of adenoviral infections is not only clinically relevant but also important to elucidate the potential use of AdVs as vectors in therapeutic applications. For...
Autores principales: | Karabulut, Onur Can, Karpuzcu, Betül Asiye, Türk, Erdem, Ibrahim, Ahmad Hassan, Süzek, Barış Ethem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139618/ https://www.ncbi.nlm.nih.gov/pubmed/34026828 http://dx.doi.org/10.3389/fmolb.2021.647424 |
Ejemplares similares
-
A correlation coefficient-based feature selection approach for virus-host protein-protein interaction prediction
por: Ibrahim, Ahmed Hassan, et al.
Publicado: (2023) -
Fiber manipulation and post-assembly nanobody conjugation for adenoviral vector retargeting through SpyTag-SpyCatcher protein ligation
por: Kadkhodazadeh, Maryam, et al.
Publicado: (2022) -
AI/ML combined with next-generation sequencing of VHH immune repertoires enables the rapid identification of de novo humanized and sequence-optimized single domain antibodies: a prospective case study
por: Arras, Paul, et al.
Publicado: (2023) -
PDX1 is the cornerstone of pancreatic β-cell functions and identity
por: Ebrahim, Nour, et al.
Publicado: (2022) -
Identification of an Immune-Related Prognostic Predictor in Hepatocellular Carcinoma
por: Wu, Lei, et al.
Publicado: (2020)