Cargando…
CoolMomentum: a method for stochastic optimization by Langevin dynamics with simulated annealing
Deep learning applications require global optimization of non-convex objective functions, which have multiple local minima. The same problem is often found in physical simulations and may be resolved by the methods of Langevin dynamics with Simulated Annealing, which is a well-established approach f...
Autores principales: | Borysenko, Oleksandr, Byshkin, Maksym |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139967/ https://www.ncbi.nlm.nih.gov/pubmed/34021212 http://dx.doi.org/10.1038/s41598-021-90144-3 |
Ejemplares similares
-
Nonlinear stochastic modelling with Langevin regression
por: Callaham, J. L., et al.
Publicado: (2021) -
Conformational Transitions of Amyloid-β: A Langevin
and Generalized Langevin Dynamics Simulation Study
por: Singh, Vishal, et al.
Publicado: (2021) -
Momentum stochastic cooling with digital notches
por: Chanel, M, et al.
Publicado: (1990) -
Momentum stochastic cooling with digital notches
por: Chanel, M, et al.
Publicado: (1990) -
Learning non-stationary Langevin dynamics from stochastic observations of latent trajectories
por: Genkin, Mikhail, et al.
Publicado: (2021)