Cargando…
Machine learning-based microstructure prediction during laser sintering of alumina
Predicting material’s microstructure under new processing conditions is essential in advanced manufacturing and materials science. This is because the material’s microstructure hugely influences the material’s properties. We demonstrate an elegant machine learning algorithm that faithfully predicts...
Autores principales: | Tang, Jianan, Geng, Xiao, Li, Dongsheng, Shi, Yunfeng, Tong, Jianhua, Xiao, Hai, Peng, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140099/ https://www.ncbi.nlm.nih.gov/pubmed/34021201 http://dx.doi.org/10.1038/s41598-021-89816-x |
Ejemplares similares
-
Microstructure Evolution and Mechanical Properties Improvement in Liquid-Phase-Sintered Hydroxyapatite by Laser Sintering
por: Duan, Songlin, et al.
Publicado: (2015) -
Microwave Sintering of Alumina at 915 MHz: Modeling, Process Control, and Microstructure Distribution
por: Marinel, Sylvain, et al.
Publicado: (2019) -
Rapid Laser Reactive Sintering for Sustainable and
Clean Preparation of Protonic Ceramics
por: Mu, Shenglong, et al.
Publicado: (2020) -
Effect of Two-Step Sintering on Properties of Alumina Ceramics Containing Waste Alumina Powder
por: Vukšić, Milan, et al.
Publicado: (2022) -
Influence of Silicon Carbide on Direct Powder Bed Selective Laser Process (Sintering/Melting) of Alumina
por: Ur Rehman, Asif, et al.
Publicado: (2022)