Cargando…
Permutation-based identification of important biomarkers for complex diseases via machine learning models
Study of human disease remains challenging due to convoluted disease etiologies and complex molecular mechanisms at genetic, genomic, and proteomic levels. Many machine learning-based methods have been developed and widely used to alleviate some analytic challenges in complex human disease studies....
Autores principales: | Mi, Xinlei, Zou, Baiming, Zou, Fei, Hu, Jianhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140109/ https://www.ncbi.nlm.nih.gov/pubmed/34021151 http://dx.doi.org/10.1038/s41467-021-22756-2 |
Ejemplares similares
-
An efficient machine learning framework to identify important clinical features associated with pulmonary embolism
por: Zou, Baiming, et al.
Publicado: (2023) -
A deep neural network framework to derive interpretable decision rules for accurate traumatic brain injury identification of infants
por: Zou, Baiming, et al.
Publicado: (2023) -
The complexity of gene expression dynamics revealed by permutation entropy
por: Sun, Xiaoliang, et al.
Publicado: (2010) -
Conditional permutation importance revisited
por: Debeer, Dries, et al.
Publicado: (2020) -
Permutation Complexity in Dynamical Systems
por: Amigo, Jose
Publicado: (2010)