Cargando…
Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19
As predicting the trajectory of COVID-19 is challenging, machine learning models could assist physicians in identifying high-risk individuals. This study compares the performance of 18 machine learning algorithms for predicting ICU admission and mortality among COVID-19 patients. Using COVID-19 pati...
Autores principales: | Subudhi, Sonu, Verma, Ashish, Patel, Ankit B., Hardin, C. Corey, Khandekar, Melin J., Lee, Hang, McEvoy, Dustin, Stylianopoulos, Triantafyllos, Munn, Lance L., Dutta, Sayon, Jain, Rakesh K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140139/ https://www.ncbi.nlm.nih.gov/pubmed/34021235 http://dx.doi.org/10.1038/s41746-021-00456-x |
Ejemplares similares
-
Strategies to minimize heterogeneity and optimize clinical trials in Acute Respiratory Distress Syndrome (ARDS): Insights from mathematical modelling
por: Subudhi, Sonu, et al.
Publicado: (2022) -
In silico dynamics of COVID-19 phenotypes for optimizing clinical management
por: Voutouri, Chrysovalantis, et al.
Publicado: (2020) -
In silico dynamics of COVID-19 phenotypes for optimizing clinical management
por: Voutouri, Chrysovalantis, et al.
Publicado: (2021) -
Mechanistic model for booster doses effectiveness in healthy, cancer, and immunosuppressed patients infected with SARS-CoV-2
por: Voutouri, Chrysovalantis, et al.
Publicado: (2023) -
Combining microenvironment normalization strategies to improve cancer immunotherapy
por: Mpekris, Fotios, et al.
Publicado: (2020)