Cargando…
Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment
IMPORTANCE: Anticipating the risk of gastrointestinal bleeding (GIB) when initiating antithrombotic treatment (oral antiplatelets or anticoagulants) is limited by existing risk prediction models. Machine learning algorithms may result in superior predictive models to aid in clinical decision-making....
Autores principales: | Herrin, Jeph, Abraham, Neena S., Yao, Xiaoxi, Noseworthy, Peter A., Inselman, Jonathan, Shah, Nilay D., Ngufor, Che |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140376/ https://www.ncbi.nlm.nih.gov/pubmed/34019087 http://dx.doi.org/10.1001/jamanetworkopen.2021.10703 |
Ejemplares similares
-
An algorithmic approach to gastrointestinal bleeding in patients receiving antithrombotic agents
por: Sadeghi, Amir, et al.
Publicado: (2020) -
Real-world Cardiovascular Outcomes Associated With Degarelix vs Leuprolide for Prostate Cancer Treatment
por: Wallach, Joshua D., et al.
Publicado: (2021) -
Effect of the Head Computed Tomography Choice Decision Aid in Parents of Children With Minor Head Trauma: A Cluster Randomized Trial
por: Hess, Erik P., et al.
Publicado: (2018) -
Effect of Adherence to Oral Anticoagulants on Risk of Stroke and Major Bleeding Among Patients With Atrial Fibrillation
por: Yao, Xiaoxi, et al.
Publicado: (2016) -
Racial and Ethnic Differences in 30-Day Hospital Readmissions Among US Adults With Diabetes
por: Rodriguez-Gutierrez, Rene, et al.
Publicado: (2019)