Cargando…
K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes
Every day more plant genomes are available in public databases and additional massive sequencing projects (i.e., that aim to sequence thousands of individuals) are formulated and released. Nevertheless, there are not enough automatic tools to analyze this large amount of genomic information. LTR ret...
Autores principales: | Orozco-Arias, Simon, Candamil-Cortés, Mariana S., Jaimes, Paula A., Piña, Johan S., Tabares-Soto, Reinel, Guyot, Romain, Isaza, Gustavo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140598/ https://www.ncbi.nlm.nih.gov/pubmed/34055489 http://dx.doi.org/10.7717/peerj.11456 |
Ejemplares similares
-
Automatic curation of LTR retrotransposon libraries from plant genomes through machine learning
por: Orozco-Arias, Simon, et al.
Publicado: (2022) -
InpactorDB: A Classified Lineage-Level Plant LTR Retrotransposon Reference Library for Free-Alignment Methods Based on Machine Learning
por: Orozco-Arias, Simon, et al.
Publicado: (2021) -
Inpactor2: a software based on deep learning to identify and classify LTR-retrotransposons in plant genomes
por: Orozco-Arias, Simon, et al.
Publicado: (2022) -
Inpactor, Integrated and Parallel Analyzer and Classifier of LTR Retrotransposons and Its Application for Pineapple LTR Retrotransposons Diversity and Dynamics
por: Orozco-Arias, Simon, et al.
Publicado: (2018) -
A systematic review of the application of machine learning in the detection and classification of transposable elements
por: Orozco-Arias, Simon, et al.
Publicado: (2019)