Cargando…
A large-scale comparative study on peptide encodings for biomedical classification
Owing to the great variety of distinct peptide encodings, working on a biomedical classification task at hand is challenging. Researchers have to determine encodings capable to represent underlying patterns as numerical input for the subsequent machine learning. A general guideline is lacking in the...
Autores principales: | Spänig, Sebastian, Mohsen, Siba, Hattab, Georges, Hauschild, Anne-Christin, Heider, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8140742/ https://www.ncbi.nlm.nih.gov/pubmed/34046590 http://dx.doi.org/10.1093/nargab/lqab039 |
Ejemplares similares
-
A parametric approach for molecular encodings using multilevel atomic neighborhoods applied to peptide classification
por: Hattab, Georges, et al.
Publicado: (2023) -
Unsupervised encoding selection through ensemble pruning for biomedical classification
por: Spänig, Sebastian, et al.
Publicado: (2023) -
Encodings and models for antimicrobial peptide classification for multi-resistant pathogens
por: Spänig, Sebastian, et al.
Publicado: (2019) -
Transfer learning compensates limited data, batch effects and technological heterogeneity in single-cell sequencing
por: Park, Youngjun, et al.
Publicado: (2021) -
Large-scale identification of protein histidine methylation in human cells
por: Kapell, Sebastian, et al.
Publicado: (2021)